NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART I (A): NEURONS & NEUROGLIA

Neural Tissue

- Contains 2 kinds of cells:
 - neurons:
 - cells that send and receive signals
 - neuroglia (glial cells):
 - cells that support and protect neurons

Neuron Types

- Sensory Neurons
 - Conveys information to CNS
 - Touch, temperature, senses, movement, ..
- Motor Neurons
 - Carry commands to effector (muscle, organs, ..)
- Interneurons
 - Only in brain & spinal cord
 - Interconnector between neurons
 - Determines where information goes (reflex, command, ..)

What is the structure of a typical neuron, and the function of each component?

Anatomy of the Neuron

- Cell Body
 - Contains basic organelles
- Dendrites
 - Receives signals coming to cell body
- Axon
 - Single large extension from cell body
 - Carries signals to effector (organ, neuron, ..)
- Synaptic Terminals
 - Endpoint of axons
 - Contains neurotransmitters for communications

Nerves: Bundles of Axons

- ‘Information Highway’
 - To-and-From Brain
- Contains many types of neurons
- Covered by connective tissue
- Contains blood vessels
NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART I (B): SCHWANN CELLS & NEURON REPAIR

Neuroglia

- Many types
- Covers vessels in brain
 - Forms blood-brain barrier
- Ingests debris and foreign invaders
- Schwann cells - myelin sheath

Myelin

- Made by Schwann cells
- Increases speed of action potentials
- Myelin insulates axons
- Makes nerves appear white
- Nodes:
 - also called nodes of Ranvier

White Matter and Gray Matter

- White matter:
 - regions of CNS with many myelinated nerves
- Gray matter:
 - unmyelinated areas of CNS

Peripheral Nerve Regeneration

- Distal portion of axon dies
- Macrophage microglia remove debris
- Schwann cells:
 - form path for new growth
 - wrap new axon in myelin
- Axon re-growth through schwann cell ‘scaffolding’

Nerve Regeneration in CNS

- Limited by chemicals released by astrocytes that:
 - block growth
 - produce scar tissue
 - impede debris removal
NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART II (A): RESTING MEMBRANE POTENTIAL

How is resting potential created and maintained?

Ion Movements and Electrical Signals

- All cell membranes produce electrical signals by ion movements
- Transmembrane potential is particularly important to neurons

Resting Membrane Potential

- Voltage of the cell at ‘rest’
 - -70 mV
- Separation of charges (like a battery)
 - Sodium (Na+)
 - Potassium (K+)
 - Chloride (Cl-)
- Pumps and shuttle systems
 - Offset the ‘leakage’

Membrane Potential (Voltage)

- Na+ is abundant outside cell
- K+ is abundant inside cell
- Cl- is abundant outside cell
- Difference in charges across the membrane determines the voltage
- Resting membrane potential is ~ -70 mV

Alterations of Membrane Potential

- Channel activity
 - Voltage
 - Chemical
 - Passive
- Pump activity

Ion Channels

- Pores in cell membrane
 - Allow movement of certain ions in/out of cell
- Some are ‘gated’ for regulation
 - Allow passage only at certain times
- Some are ‘leaky’
 - Allow passage continuously
Ion Channels: Ion Specific

- Sodium (Na+) Channels
 - Only allow Na+ to pass
 - Voltage-gated or chemically-gated
 - Important role in depolarization and refractory (recovery) period duration

- Potassium (K+) Channels
 - Only allow K+ to pass
 - Voltage-gated or chemically-gated
 - Important role in repolarization
 - Many, many different types

Ion Channels: Types (Classes)

- Passive
 - Resting membrane potential

- Voltage-Gated
 - Action potential

- Chemically-Gated
 - Synaptic potential

- Mechanically-Gated
 - Touch, vision, etc.

3 Conditions of Gated Channels

- Closed
 - “Ready to open”

- Open
 - Allowing ions to cross membrane

- Closed & Locked
 - “Inactivated”

Pumps in the Membrane

- Sodium-potassium pump:
 - powered by ATP
 - carries 3 Na+ out and 2 K+ in
 - maintains resting potential (-70 mV)
How is the resting membrane potential altered?

Graded Potentials
- Also called local potentials
- Any stimulus that opens a gated channel:
 - Hyperpolarization (IPSP)
 - Depolarization (EPSP) = sub-threshold stimulus

Depolarization
- Decreasing the negativity of the resting membrane potential
- Result of opening a sodium channel
- Positive ions move in, not out of cell
 - This makes the cell more positive

Hyperpolarization
- Increasing the negativity of the resting membrane potential
- Result of opening a potassium channel
- Positive ions move out, not into cell
 - This makes the cell more negative
NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART II (B): ACTION POTENTIAL

Action Potential: Phases

- **Initial Depolarization Signal**
 - Must reach -55 mV or nothing will happen
- **Depolarization Phase**
 - Cell rapidly becomes more positive
 - Peak occurs at +30 mV
- **Repolarization Phase**
 - Cell becomes less positive (return to normal)
- **Undershoot**

Action Potential: Depolarization

- Cell becomes ‘less negative enough’
 - Reaching ‘threshold’
- Cell membrane voltage goes from
 - 70 mV to -55 mV (+15 mV change)
- **Na+ channels open (+feedback loop)**
 - Na+ rushes into cell
 - Cell becomes more positive
 - Opens more Na+ channels
 - At 0 mV, Na+ channels inactivate
 - Peak of action potential at +30 mV

Action Potential: Repolarization

- **K+ channels open (voltage-gated)**
 - K+ leaves cell
 - Cell becomes more negative
 - Resting membrane potential restored
- Na+ channels are still ‘inactivated’ (closed & locked)

Action Potential: Overshoot

- Too much K+ leaves cell
 - Cell becomes hyperpolarized
 - Hyperpolarized = opposite of depolarized
- Na+ / K+ pump restores gradient
 - Na+ pumped out of cell
 - K+ pumped into cell
Steps in the Generation of Action Potentials

• Depolarization to threshold
 - -70 mV to -55 mV
 - Achieved by a depolarizing graded potential
• -55 mV threshold achieved
 - Opening of V-gated Na+ channels
 - Inner membrane changes from negative to positive
• +30 mV
 - V-gated Na+ channels close and inactivate
 - V-gated K+ channels open, allowing K+ out
 - Repolarization begins
 - Cell becomes more negative
• -70 mV
 - V-gated K+ channels begin to close
 - Na+ / K+ pump restores gradient
• -90 mV
 - V-gated K+ channels finish closing:
 • membrane is hyperpolarized
• -70 mV
 - membrane potential is restored

2 Divisions of the Refractory Period

• Absolute refractory period:
 - sodium channels closed & inactivated
 - another action potential isn’t possible
• Relative refractory period:
 - membrane potential almost normal
 - during the ‘overshoot’ phase
 - very large stimulus can initiate action potential

Propagation of Action Potentials

• moves action potentials generated in axon hillock toward axon terminal
 - a series of repeated action potentials
• Continuous
 - Unmyelinated axon
• Saltatory
 - Myelinated axon
Continuous Propagation
1. Action potential in segment 1
 • Depolarizes membrane to +30 mV
2. Local current
 • Depolarizes second segment to threshold
3. Second segment develops action potential
 • First segment enters refractory period
4. Local current depolarizes next segment
 • Cycle repeats
 • Action potential travels in 1 direction (1 m/sec)

Saltatory Propagation
• Propagation of action potential along myelinated axons
• Faster and uses less energy than continuous propagation
• Local current “jumps” from node to node
• Depolarization occurs only at nodes
How do neurons communicate with each other or with other cells of the body?

Synapse
- Area where a neuron communicates with another cell
- Presynaptic cell:
 - neuron that sends message
- Postsynaptic cell:
 - cell that receives message
- Synaptic cleft:
 - small gap that separates the two cells

The Synaptic Knob
- Expanded end of axons
 - Contains synaptic vesicles of neurotransmitters

Neurotransmitters
- Are chemical messengers
- Are released at presynaptic membrane
- Affect receptors of postsynaptic membrane
- Are broken down by enzymes
- Are reassembled at synaptic knob
NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART III (B): GRADED POTENTIALS

Synaptic Activity
• An activated neuron activates a 2nd neuron:
 - presynaptic neuron releases neurotransmitters to postsynaptic neuron (or other postsynaptic cell)
 - The postsynaptic neuron received the neurotransmitter
 - Neurotransmitters cause a graded potential
 • IPSP or EPSP

2 Classes of Neurotransmitters
• Excitatory neurotransmitters:
 - cause depolarization of postsynaptic membranes
 - EPSP (promote action potentials)
• Inhibitory neurotransmitters:
 - cause hyperpolarization of postsynaptic membranes
 - IPSP (suppress action potentials)

The Effect of a Neurotransmitter
• On a postsynaptic membrane:
 - depends on the receptor
 - not on the neurotransmitter
• e.g., acetylcholine:
 - usually promotes action potentials
 - but inhibits cardiac neuromuscular junctions

Events at a ‘Generic’ Synapse
1. Action potential depolarizes synaptic knob
2. Exocytosis of vesicles filled with a neurotransmitter
3. Neurotransmitter binds to receptors on postsynaptic membrane
4. Neurotransmitters are broken down by enzymes
NEURAL TISSUE
(NEUROPHYSIOLOGY)
PART IV: NEUROTRANSMITTERS

Neurotransmitter Types

<table>
<thead>
<tr>
<th>Small-Molecule Amines</th>
<th>Neuropeptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td>Endorphins</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>Substance P</td>
</tr>
<tr>
<td>Dopamine</td>
<td></td>
</tr>
<tr>
<td>Serotonin</td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td></td>
</tr>
<tr>
<td>Glutamate</td>
<td></td>
</tr>
</tbody>
</table>

Small-Molecule Transmitters

- Synthesized in pre-synaptic knob
- Recycled vesicles and neurotransmitters

Acetylcholine (ACh)

- Neuro-muscular junction
- Memory
- Pathology
 - Alzheimer’s disease
 - Myasthenia gravis
 - Botulism
- Drugs
 - Nicotine (affects nicotinic receptors for Ach)
 - Curare (block nicotinic receptors for Ach)

Norepinephrine (NE)

- aka: noradrenalin
- Brain
 - Elevates mood, “feel good”
 - Can also increase aggressive behavior
- Sympathetic nervous system
 - Excitatory and Inhibitory effects
- Drugs
 - Monoamine oxidase inhibitors (block NE, dopamine, serotonin reuptake)
 - Amphetamines (↑ NE release)
 - Cocaine & Antidepressants (block NE reuptake)
Dopamine

- **Brain**
 - Emotions, “feel good”
 - Muscle coordination
- **Pathology**
 - ADHD
 - Parkinson’s disease
- **Drugs**
 - L-Dopa (↑ dopamine release)
 - Monoamine oxidase inhibitors (block NE, dopamine, serotonin reuptake)
 - Amphetamines (↑ dopamine release)
 - Cocaine & Antidepressants (block dopamine reuptake)

Serotonin

- **Brain, Spinal Cord, and GI tract**
 - Inhibitory effects
 - Role in sleep and mood
- **Pathology**
 - Depression, insomnia
 - Appetite, Nausea
- **Drugs**
 - Selective serotonin reuptake inhibitors (block serotonin reuptake)
 - Prozac
 - Monoamine oxidase inhibitors (block NE, dopamine, serotonin reuptake)

Glutamate

- **Brain and Spinal Cord**
 - Excitatory effects
 - Learning and Memory
- **Pathology**
 - Involved in stroke damage by killing cells surrounding ischemic area
- **Drugs**
 - Alcohol (blocks glutamate receptors)
 - Impairs learning and memory
 - Slows brain functions
Gamma-aminobutyric Acid

- aka: GABA
- Brain and Spinal Cord
 - Inhibitory effects
- Pathology
 - Epilepsy
- Drugs
 - Alcohol (↑ GABA effects)
 - Valium (↑ GABA levels)
 - Epilepsy medications (↑ GABA levels)

Neuropeptides

- Peptides: chain of amino acids
- Synthesized in cell body
 - Packaged into vesicles
- Transported to axon nerve endings
 - Few cm/day
- Not recycled

Endorphins

- Brain and Spinal Cord
 - Inhibitory effects
 - Inhibits Substance P
 - Natural opiate
 - Endogenous form of morphine & heroin
 - Intense exercise
 - Increases endorphin levels “runner’s high”
- Drugs
 - Morphine and heroin (stimulate endorphin receptors)

Substance P

- Dorsal root ganglia of spinal cord
 - Pain neurons synapse on ganglia
 - Slow to build up
 - Slow to be destroyed